تحلیل انطباق‌پذیری اقلیمی و تمهیدات گرمایشی و سرمایشی معماری مادی مجموعۀ نوشیجان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی‌ارشد باستان‌شناسی، گروه باستان‌شناسی، دانشکدۀ هنر و معماری، دانشگاه بوعلی‌سینا، همدان، ایران

2 دانشیار گروه باستان‌شناسی، دانشکدۀ هنر و معماری، دانشگاه بوعلی‌سینا، همدان، ایران.

3 استادیار گروه معماری، دانشکدۀ هنر و معماری، دانشگاه بوعلی‌سینا، همدان، ایران.

چکیده

مطالعۀ انطباق‌پذیری اقلیمی معماری یک بنای باستانی با بهره‌مندی از علوم باستان‌شناسی، معماری، جغرافیا، اقلیم‌شناسی کاربردی و دیرین‌اقلیم‌شناسی امکان‌پذیر است. انجام چنین مطالعاتی در ارتباط با مجموعۀ مذهبی نوشیجان در دشت ملایر متعلق به دورۀ ماد، اطلاعات نوینی به گسترۀ دانسته‌هایمان از معماری دورۀ مذکور می‌افزاید. پژوهش حاضر به‌دنبال ارزیابی سه پرسش اصلی است: 1) مؤلفه‌های کالبدی معماری مجموعۀ نوشیجان به‌منظور انطباق‌پذیری آن با شرایط اقلیمی چه بوده است؟ 2) میزان اثربخشی این مؤلفه‌ها در راستای موضوع مذکور در چه حد بوده است؟ و 3) تمهیدات گرمایشی یا سرمایشی غیرکالبدی مجموعه چه بوده است؟ اطلاعات لازم به روش‌های کتابخانه‌ای و میدانی و تحلیل‌های چهار نرم‌افزار اتوکد، کلایمت کنسالتنت، اکوتکت و دیزاین‌بیلدر در حوزۀ انرژی و معماری گردآوری و به روش توصیفی-تحلیلی پردازش شده است. مؤلفه‌های کالبدی معماری مجموعه شامل جهت‌گیری آن به‌سمت جنوب با کشیدگی شرقی-غربی، تراکم و ارتفاع زیاد بناها و ایجاد معابر و حیاط‌ها با عرض کم، استفاده از خشت در ساخت دیوارها و ایجاد پوشش مسطح تیرپوش، تعبیۀ یک درگاه ورودی برای اغلب بناها، پنجره‌های جانبی در دیوارهای شرقی و جنوبی و هواکش‌ها، ساخت پیشخوان در ورودی اغلب بناها و دو اجاق مکشوف در اتاق نگهبانی قلعه است. این مؤلفه‌ها در استفاده از حرارت تابشی خورشید و کاهش تأثیرگذاری بادهای نامطلوب در جهت گرمایش ساکنان در تمامی ساعات از اواسط اردیبهشت تا اواسط شهریور و برخی ساعات روزهای دیگر سال و رفع نیاز سرمایشی آنان در تمامی روزهای گرم سال مؤثر است؛ اما به‌کارگیری این راهکارها در اغلب ساعات از اواسط مهر تا اواسط اردیبهشت (درمجموع 3153 ساعت) کافی نبوده و به تولید گرما نیاز بوده است. به احتمال، ساکنان از تمهیدات گرمایشی غیرکالبدی مشابه منقل‌های آتش مکشوف از کاخ‌های امپراتوری آشور استفاده می‌کرده‌اند. درنهایت، انطباق‌پذیری اقلیمی مجموعه با دشت ملایر و اتخاذ تمهیدات گرمایشی و سرمایشی مناسب در آن باعث تأمین آسایش حرارتی ساکنان می‌شده است.   

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Exploring the Climatic Adaptability at the Median Complex of Nush-i Jan

نویسندگان [English]

  • Hamed Hajilooei 1
  • Kazem Mollazadeh 2
  • Morteza Maleki 3
1 M.A. in Archaeology, Department of Archaeology, Faculty of Art and Architecture, Bu-Ali Sina University, Hamadan, Iran
2 Associate Professor, Department of Archaeology, Faculty of Art and Architecture, Bu-Ali Sina University, Hamadan, Iran
3 Assistant Professor, Department of Architecture, Faculty of Art and Architecture, Bu-Ali Sina University, Hamadan, Iran
چکیده [English]

Abstract
The climatic adaptability of an ancient building’s architecture can be studied by utilizing various scientific disciplines such as archaeology, architecture, geography, applied climatology, and paleoclimatology. By conducting studies on the religious complex of Nush-i Jan in the Malayer Plain, which dates to the Median Period, we can expand our understanding of the architectural practices during that era. This current research aims to address three main questions: 1) What were the physical components of Nush-i Jan complex that allowed it to adapt to the climatic conditions? 2) How effective were these components in addressing the aforementioned issue? And 3) What were the non-physical heating or cooling arrangements implemented in the complex? Through library and field methods, the essential data has been collected. The analysis was conducted using four software applications - AutoCAD, Climate Consultant, Ecotect, and DesignBuilder - in the energy and architecture domains. The information has been processed using a descriptive-analytical approach. The architectural components of the complex, such as its orientation towards the south with an east-west extension, high building density and height, narrow passages and courtyards, mud-brick walls, wooden beam roofs, entrance doors for most of the spaces, side windows in the eastern and southern walls, ventilators, counters at the entrances of most of the buildings, and two fire-places in the guard room of the fort, play crucial roles in utilizing solar heat and minimizing the impact of cold winds. These elements ensure that the residents’ heating needs are met from May to September and partially during other months, while also addressing cooling requirements on hot days. However, additional heating sources were necessary during most hours from October to May (3153 hours in total); in other words, heating production was needed. It is possible that non-physical heating methods, like the tramrails used in the Assyrian imperial palaces, were employed by the inhabitants. Finally, the complex’s climatic adaptability to the Malayer Plain, along with appropriate heating and cooling strategies, have guaranteed the residents’ thermal comfort.
Keywords: Median Architecture, Nush-I Jan Tepe, Thermal Comfort, Climatic Adaptability, Environmental Archaeology.
Introduction
Since favorable climatic conditions are an important factor in the formation and continuation of human life throughout history, it was necessary to take measures to make the establishment of human societies suitable. The selection of the location of the establishment hinges on a comprehensive and precise understanding of the climatic conditions of the desired region’s annual, seasonal, monthly, and daily fluctuations. Archaeological evidence and data indicate that this awareness has been present since prehistoric times, and efforts have been made to maximize the utilization of nature and mitigate the adverse effects of its risks on human life. With the formation of the first villages, buildings were gradually made in a way to adapt to the climatic conditions of the surrounding environment throughout the year, by adopting cooling and heating measures. The extent of these arrangements broadened in the post-prehistoric era as permanent settlements expanded geographically.
The limited historical records and archaeological findings pertaining to the Median civilization have left many uncertainties surrounding various aspects of their society, particularly in terms of architecture. The well-preserved architectural complex at Nush-i Jan Tepe in the Malayer Plain serves as a valuable source of information on the architectural practices of the Median Period and their adaptability to climatic conditions. It is essential for architectural structures to be designed in accordance with the local climate to ensure the thermal comfort of the residents. In cases where natural adaptability is insufficient, heating and cooling systems are implemented to regulate the temperature within the buildings. This study aims to investigate the architectural elements and heating/cooling strategies employed in the Nush-i Jan in response to the climatic conditions of the Malayer Plain.
The examination of ancient architecture’s ability to adapt to different climates and its cooling and heating systems can be explored through the fields of archaeology, architecture, geography, applied climatology, and paleoclimatology. The analysis of energy usage in ancient structures falls under the domain of “Environmental Archaeology,” a branch of archaeology. Given the limited research on historical and prehistoric buildings in Iran, this study marks the initial steps towards such investigations and can be extended to include other architectural structures from the Median Period, as well as prehistoric, Achaemenid, Parthian, and Sasanian buildings. By focusing on Nush-i Jan complex as a remnant of the Median religious complex, this study can provide valuable insights into the architecture of the Median Period and other times and places with similar climatic conditions to the Malayer Plain.
Questions and Hypotheses: The current research seeks to evaluate three main questions: 1) What were the physical components of Nush-i Jan complex that allowed it to adapt to the climatic conditions? 2) How effective were these components in addressing the aforementioned issue? And 3) What were the non-physical heating or cooling arrangements implemented in the complex?
Research Method: The evidence in this research was collected using library and field methods. The Analysis was done using softwares in the fields of energy and architecture. These materials were then processed in a descriptive-analytical manner (Fig. 1). Initially, a thorough examination of the Nush-i Jan complex, which holds significance in architectural discourse, was carried out. In cases where necessary, reconstruction was undertaken based on available evidence and utilizing software tools. The architectural remains of the complex were reconstructed in 3-d using AutoCAD, and subsequently analyzed by DesignBuilder to align with the research objectives. To facilitate this research, a comprehensive understanding of the region’s long-term climatic conditions was essential. Consequently, the climatic fluctuations of the Malayer Plain were studied within the time frame of 1997-2022 AD, and the required raw climatic data were extracted using Climate Consultant software via the EnergyPlus web portal. This portal sources its information from weather stations’ recorded data. Subsequently, the obtained information was inputted into DesignBuilder software, enabling the generation of quantitative and graphical outputs pertaining to the relationship between the aforementioned data and the thermal comfort of the residents. Additionally, paleoclimatological studies of the Median Period were explored in this context. Based on the analysis of the climatic conditions of the mentioned plain and the thermal comfort of its inhabitants, the adaptability of both physical and non-physical components of the complex was investigated. To determine the optimal orientation of the usage area, Ecotect software was employed, and its output was compared with the modeling in DesignBuilder software.
Analysis of the Climatic Adaptability of Nush-i Jan Complex
The analysis of the climatic conditions of Malayer Plain and the thermal comfort of its residents indicates a greater need to focus on heating measures rather than cooling measures in the architectural design of buildings in the area. Natural heating methods, such as utilizing sunlight and minimizing the impact of cold winds, help alleviate cold stress for residents from May to September and some hours on other days throughout the year. Cooling strategies, including shading and natural ventilation, offer thermal comfort from June to September and there is no need for cooling during the other days of the year. Considering these factors and the traditional architecture of Malayer Plain, the complex is strategically oriented to maximize sunlight exposure and shield against unfavorable monsoon winds from the south. The east-west elongation of the complex ensures efficient absorption of solar energy while reducing the impact of adverse winds. 
As the complex was constructed over time, the high density and height of the buildings have given rise to passages and two small and narrow courtyards in the east and south. This has led to a decrease in the space available for movement of unfavorable winds, along with shading on openings on hot days, resulting in challenges in the narrow passages. The utilization of clay in constructing walls and forming a thick, flat covering of beams with excellent capacity and thermal delay has effectively minimized heat loss during cold days and decreased heat penetration from the outside on hot days within buildings. By installing entrance doors and side windows at specific heights on the south (optimal direction in the region) or east (maximum sunlight in the region) sides of buildings, the interior temperature can be optimized. This setup promotes warmth during cold days and natural ventilation during hot days. It is common practice to keep doors closed and windows and vents blocked in colder weather. Moreover, having counters at building entrances aids in regulating indoor air quality.
Conclusion
The application of solutions to the architectural design during the majority of the hours from October to May, totaling 3153 hours, falls short in providing adequate thermal comfort for the residents of the complex. As a result, additional heat production is required. The remains of two fireplaces were found in the counter of the fort building, but no other similar structures, like those found in the third layer of Baba Jan Tepe in Luristan, have been identified. Therefore, it is likely that the inhabitants utilized portable metal braziers, similar to the Assyrian types, to generate the necessary heat. Ultimately, the current research demonstrates that the architects of Nush-i Jan possessed ample knowledge regarding various aspects of the local climate and implemented heating and cooling measures to ensure the thermal comfort of the residents throughout different months of the year.

کلیدواژه‌ها [English]

  • Median Architecture
  • Nush-I Jan Tepe
  • Thermal Comfort
  • Climatic Adaptability
  • Environmental Archaeology
- استروناخ، دیوید؛ و روف، مایکل، (1390). نوشیجان 1: بناهای بزرگ دوره ماد. ترجمۀ کاظم ملازاده، همدان: دانشگاه بوعلی‌سینا.
- برزگر، زهرا؛ و حیدری، شاهین، (1396). «بررسی نقش عمق و سایه ورودی خانه‌های سنتی در تأمین آسایش حرارتی بیرونی- نمونه موردی: بافت قدیم شهر شیراز». معماری اقلیم گرم و خشک، 5(5): 21-32. 10.29252/DOI: smb.5.5.21
- تابان، محسن؛ پورجعفر، محمدرضا؛ بمانیان، محمدرضا؛ و حیدری، شاهین، (1391). «تأثیر اقلیم بر شکل تزیینات معماری با تکیه‌بر تحلیل میزان سایه‌اندازی، خوون‌چینی‌های آجری بافت تاریخی دزفول». نقش جهان، 2(3): 1-11. http://bsnt.modares.ac.ir/article-2-404-fa.html
- ثروتی، زهرا؛ و لطیفی، غلامرضا، (1400). «ارزیابی تأثیر معیارهای اقلیمی طراحی مدل جغرافیایی میدان شهری براساس کیفیت و جهت‌یابی باد غالب به‌منظور دستیابی به آسایش حرارتی: مطالعه موردی میدان نبوت شرق تهران». اطلاعات جغرافیایی(سپهر)، 30(117): 251-265. DOR: 20.1001.1.25883860.1400.30.117.15.2
- جعفریان، سپیده؛ سرکرده‌ئی، الهام؛ منصفی پراپری، دانیال؛ و مجاهدی، محمدرضا، (1399). «ایجاد سایه در فضای باز با هدف افزایش آسایش حرارتی». معماری‌شناسی، 3(18): 1-8. https://ensani.ir/file/download/article/1615375297-10149-17-5.pdf
- حجازی‌زاده، زهرا؛ و کربلائی‌درئی، علیرضا، (1394). «آسایش حرارتی در ایران». جغرافیا، 13(46): 21-29. https://www.sid.ir/paper/506755/fa
- رازجویان، محمود، (1374). «شرایط کوران هوا». صفه، 5(1 و 2): 32-43. DOR: 20.1001.1.1683870.1374.5.2.8.6
- زارع‌مهذبیه، آیدا؛ حیدری، شاهین؛ و شاهچراغی، آزاده، (1398). «بررسی کیفیت محیطی داخلی خانه‌های قاجاری شیراز با تأکید بر آسایش حرارتی و نور روز (نمونه موردی: خانه نعمتی)». معماری اقلیم گرم و خشک، 7(10): 269-290. https://jias.kashanu.ac.ir/?_action=xml&article=111760&lang=en
- زنگنه، نجمه؛ و برزگر، زهرا، (1397). «مقایسۀ میزان آسایش حرارتی درونی و بیرونی زمستان‌نشین و حیاط مرکزی در خانه سنتی به روش PMV و PPD (مطالعۀ موردی: خانۀ تولایی شیراز)». مطالعات محیطی هفت حصار، 6(24): 55-68. http://hafthesar.iauh.ac.ir/article-1-570-fa.html
- سال‌نامۀ آماری استان همدان، (1399). تهران: مرکز آمار ایران.
- طاهباز، منصوره؛ جلیلیان، شهربانو؛ و موسوی، فاطمه، (1393). «نقش جرم حرارتی خاک در کنترل شرایط محیطی ساختمان؛ برداشت میدانی در تعدادی از بناهای تاریخی شهر کاشان». صفه، 24(3): 31-55. DOR: 20.1001.1.1683870.1393.24.3.3.6
- طلایی، حسن، (1385). عصر مفرغ ایران. تهران: سازمان مطالعه و تدوین کتب علوم انسانی دانشگاه‌ها(سمت)، پژوهشکدۀ تحقیق و توسعة علوم انسانی.
- ظهوری‌قره‌درویشلو، راحله، (1394). «معماری همساز با اقلیم کوهستانی خیلی سرد، مطالعه موردی: خانه‌های تاریخی اردبیل». جغرافیا، 13(47): 211-229. https://www.sid.ir/paper/514108/fa
- عیالی، حامد؛ و موحد، خسرو، (1395). «تعیین جهت بهینه‌ی حیاط مرکزی خانه‌های دوره‌ی قاجار شیراز براساس میزان دریافت تابش انرژی خورشیدی». جغرافیا و توسعه، 14(42): 161-182. 10.22111/DOI: gdij.2016.2349
- قانقرمه، عبدالعظیم؛ و روشن، غلامرضا، (1397). «بازنگری در تعیین دمای پایۀ آسایش حرارتی مناطق اقلیمی متفاوت ایران به‌منظور محاسبۀ شاخص درجه-روز موردنیاز سرمایشی و گرمایشی». اطلاعات جغرافیایی(سپهر)، 27(105): 127-143. DOR: 20.1001.1.25883860.1397.27.105.10.2
- قیابکلو، زهرا، (1380). «روش‌های تخمین محدوده آسایش حرارتی». هنرهای زیبا، 10: 68-74. https://jhz.ut.ac.ir/article_13629_2ed8138d2ef2b85fd1d03b7014b5b989.pdf
- کرمی‌راد، سینا؛ بنازاده، بهاره؛ زارعی، هانی؛ و قزلباش، ابراهیم، (1398). «ارزیابی و تحلیل آسایش حرارتی در حیاط خانه‌های تاریخی شهر شیراز در دوره قاجاریه». پژوهش‌های باستان‌شناسی ایران، 9(20): 183-202. 10.22084/DOI:  nbsh.2019.17023.1792
- کرمی‌کردعلیوند، فیروزه؛ و نارنگی‌فرد، مهدی، (1396). «بهینه‌سازی جهت‌گیری ساختمان‌ها در برابر تابش(مطالعه موردی: شهر شیراز)». اندیشۀ جغرافیایی، 9(16): 96-122. https://geonot.znu.ac.ir/?_action=xml&article=25845
- کریم‌زاده، جمشید؛ مهدی‌نژاد‌درزی، جمال‌الدین؛ و کریمی، باقر، (1400). «سنجش عملکرد عناصر اقلیمی خانه‌های سنتی بافت تاریخی شیراز با رویکرد آسایش حرارتی؛ مورد پژوهی: ایوان». معماری ایرانی، 10(20): 89-115.  10.22052/DOI: jias.2022.111875
- محبوبی، قربان؛ و آذر، علی، (1399). «بازشناخت نقش محیط و معیشت بر تکوین گونه مسکن روستایی، مطالعه موردی: شمال شهرستان مراغه». اندیشۀ معماری، 4(7): 138-154. DOR: 20.1001.1.25383019.1399.4.7.10.0
- ملازاده، کاظم، (1393). باستان‌شناسی ماد. تهران: سازمان مطالعه و تدوین کتب علوم انسانی دانشگاه‌ها (سمت)، پژوهشکدۀ تحقیق و توسعۀ علوم انسانی.
- ملازاده، کاظم؛ و محمدیان‌منصور، صاحب، (1390). «مطالعه و معرفی شیوه بدیع طاق‌زنی دورۀ ماد در تپه نوشیجان ملایر». مطالعات باستان‌شناسی، 3(2): 129-148. https://jarcs.ut.ac.ir/?_action=xml&article=28859
- ملک‌شهمیرزادی، صادق، (1391). ایران در پیش‌ازتاریخ: باستان‌شناسی ایران از آغاز تا سپیده‌دم شهرنشینی. تهران: سبحان نور.
- منشی‌زاده، رحمت‌اله؛ حسینی، سیدابراهیم؛ اجاق، عقیل؛ و شعبانی، سیده حمیده، (1392). «آسایش حرارتی و تأثیر ارتفاع ساختمان‌ها بر خرد اقلیم فضاهای شهری نمونه موردی خیابان شهرداری تهران (حدفاصل میدان تجریش تا میدان قدس)». آمایش محیط، 6(20): 109-126. https://sid.ir/paper/130646/fa
- مؤذن، سجاد؛ و صبرنجی، شینا، (1400). «شناخت و تحلیل کالبدی معماری بومی روستای لیوس». معماری و شهرسازی ایران، 12(2): 153-169. doi.org/10.30475/isau.2021.221675.1362
- نژادابراهیمی، احد؛ و تأملی، محمود، (1397). «جهت‌گیری در معماری و نقش آن در شکل‌گیری خانه‌های تاریخی تبریز». معماری‌شناسی، 1(5): 1-12. https://memarishenasi.ir/files/cd_papers/r_126_190121122233.pdf
- یادگاری، پگاه؛ و سجادزاده، حسن، (1400). «نقش الگوی فضایی و پوشش گیاهی فضاهای باز محلی بر میزان آسایش حرارتی در اقلیم سرد». مطالعات شهری، 10(40): 15-26. 10.34785/DOI: j011.2021.937
- Ayali, H. & Movahhed, Kh., (2015). “Determine the Optimal Direction of Central Yard of Houses at Qajar Period in Shiraz Based on the Rate of Solar Energy Radiation”. Geography and Development, 14(42): 161-182. DOI: 10.22111/gdij.2016.2349 (In Persian)
- Barzegar, Z. & Heydari, S., (2016). “A Study of the Functions of Traditional House Entrances’ Depth and Shadow on Outdoor Thermal Comfort in the Historical Context of Shiraz”. Architecture in Hot and Dry Climate, 5(5): 21-32. DOI: 10.29252/smb.5.5.21 (In Persian)
- Ghanghormeh, A. & Roshan, G., (2017). “The review of determining the thermal comfort base temperature in different climatic regions in order to calculate the required Degree-Day index for cooling and heating”. Geographical Data (Sepehr), 27(105): 127-143. DOR:  20.1001.1.25883860.1397.27.105.10.2 (In Persian).
- Ghiyabeklo, Z., (2008). “Thermal comfort range estimation methods”. Honar-ha-ye Ziba, 10: 68-74. https://jhz.ut.ac.ir/article_13629_2ed8138d2ef2b85fd1d03b7014b5b989.pdf (In Persian)
- Goff, C., (1970). “Excavations at Bābā Jān, 1968: Third Preliminary Report’’. Iran, 8: 141-156. https://doi.org/10.2307/4299639
- Goff, C., (1977). “Excavations at Baba Jan: The Architecture of the East Mound, Levels II and III’’. Iran, 15: 103-140. Doi: 10.2307/4300567
- Hajarizadeh, Z. & Karbalai Derei, A., (2014). “Thermal comfort in Iran”. Geography, 13(46): 21-29. https://www.sid.ir/paper/506755/fa (In Persian)
- Jafarian, S.; Sarkardei, E.; Monsefi Prapari, D. & Mojahedi, M., (2019). “Creating shade in the open space with the aim of increasing thermal comfort”. Architecture, 3(18): 1-8. https://ensani.ir/file/download/article/1615375297-10149-17-5.pdf (In Persian)
- Karimzadeh, J.; Mahdinezhad Darzi, J. & Karimi, B., (2021). “Climatic Performance of Traditional Houses in the Old Texture of Shiraz using the Thermal Comfort Approach Case Study: the Iwan (Veranda)”. Iranian Architecture Studies, 10(20): 89-115. 10.22052/jias.2022.111875 (In Persian)
- Karmikurd Alivand, F. & Narengifard, M., (2016). “Optimize the orientation of buildings against radiation(Case Study: Shiraz)”. Geographical Notion, 9(16): 96-122. https://geonot.znu.ac.ir/?_action=xml&article=25845 (In Persian)
- Karamirad, S.; Banazadeh, B.; Zarei, H. & Qezelbash, I., (2018). “Assessment and Analysis of Thermal Comfort Courtyards of Shiraz Historical Houses in Qajar Era”. Pazhohesh-ha-ye Bastanshenasi Iran, 9(20): 183-202. DOI: 10.22084/nbsh.2019.17023.1792 (In Persian)
- Kertai, D., (2015). The Architecture of Late Assyrian Royal Palaces. Oxford University Press; Illustrated edition.
- Kertai, D., (2019). “The Thronerooms of Assyria”. Bietak, M. and Matthiae, P. and Prell, S. Eds. Ancient Egyptian and Ancient Near Eastern Palaces Volume II. Proceedings of a Workshop Held at the 10th ICAANE in Vienna, 25–26 April 2016 (Contributions to the Archaeology of Egypt, Nubia and the Levant 8). Wiesbaden: 41- 56. https://www.academia.edu/39238191/The_Thronerooms_of_Assyria
- Mahboubi, G. & Azar, A., (2019). “Recognizing the Role of Environment and Subsistence on the Genesis of Rural Housing Types(Case Study: North of Maragheh)”. Architectural Thought, 4(7)” 138-154. DOR: 20.1001.1.25383019.1399.4.7.10.0 (In Persian)
- Malek Shahmirzadi, S., (2011). Iran in prehistory: Iranian archeology from the beginning to the dawn of urbanization. Tehran: Subhan-e Noor. (In Persian)
- Matthews, R. & Fazeli Nashli, H., (2022). The Archaeology of Iran from the Palaeolithic to the Achaemenid Empire(1st ed.). London & New York: Routledge. https://doi.org/10.4324/9781003224129
- Moazzen, S. & Sadberanji, S., (2021). “Physical Analysis and Cognition of Vernacular Architecture in Leives Village”. Iranian Architecture and Urbanism, 12(2): 153-169. doi.org/10.30475/isau.2021.221675.1362 (In Persian)
- Mollazadeh, K., (2014). Archaeology of Media. Tehran: The Organization for Researching and Composing University Textbooks in the Islamic Sciences and the Humanities (SAMT).(In Persian)
- Mollazadeh, K. & Mohammadian Mansour, S., (2018). “Study and Introduction of Novel Arch- Construction Method During Median”. Archaeological Studies, 3(2): 129-148. https://jarcs.ut.ac.ir/?_action=xml&article=28859 (In Persian)
- Monshizadeh, R.; Hosseini, E.; Ojaq, E. & Shabani, H., (2012). “Thermal comfort and the effect of the height of buildings on the sub climates of urban spaces, a case study of Shahradari Street in Tehran (between Tajrish Square and Quds Square)”. Environmental Studies, 12(2): 110 123. https://sid.ir/paper/130646/fa (In Persian)
- Nezhad Ebrahimi, A. & Ta’ammoli, M., (2017). “Orientation in architecture and its role in the formation of historical houses in Tabriz”. Architecture, 1(5): 1-12. https://memarishenasi.ir/files/cd_papers/r_126_190121122233 (In Persian)
- Razjouyan, M., (1374). “Blind air conditions”. Soffeh, 5(1 and 2): 32-43, DOR: 20.1001.1.1683870.1374.5.2.8.6 (In Persian)
- Servati, Z. & Latifi, G., (2021). “Evaluating the impacts of climatic factors, especially quality and direction of the prevailing wind on thermal comfort using geographical models of a town square Case study: Nabovat Square in East of Tehran”. Geographical Data(Sephr), 30(117): 251-265. DOR: 20.1001.1.25883860.1400.30.117.15.2 (In Persian)
- Stronach, D., (1968). “Tepe Nush-i Jan: A Mound in Media’’. The Metropolitan Museum of Art Bulletin, 27(3): 177-186. https://doi.org/10.2307/4299646
- Stronach, D., (1969). “Excavations at Tepe Nūsh-i Jān, 1967’’. Iran, 7, 1-20. https://doi.org/10.2307/4299610
- Stronach, D. & Roaf, M., (2007). Nush-i Jan I: The Major Buildings of the Median Settlement(British Institute of Persian Studies). London: Peeters Publishers; Illustrated edition.
- Stronach, D. & Roof, M., (2019). Nush-i Jan 1: Great buildings of the Median period. Translated by Kazem Mollazadeh, Hamadan: Bu-Ali Sina University (In Persian).
- Stronach, D.; Roaf, M.; Stronach, R. & Bökönyi, S., (1978). “Excavations at Tepe Nush-i Jan’’. Iran, 16: 1-28. https://doi.org/10.2307/4299646
- Taban, M.; Pourjafar, M.; Bamanian, M. & Heydari, Sh., (2011). “The effect of climate on the shape of architectural decorations based on the analysis of the amount of shading, the brick patterns of the historical texture of Dezful”. Naqsh-i Jahan, 2(3): 1-11. http://bsnt.modares.ac.ir/article-2-404-fa.html (In Persian)
- Tahbaz, M.; Jalilian, S. & Mousavi, F., (2013). “Subterranean Thermal Mass in Environmental Control A Field Study in Historic Houses, Kashan’’. Soffeh, 24(3): 31 55. DOR: 20.1001.1.1683870.1393.24.3.3.6 (In Persian)
- Talai, H., (1385). Iran's Bronze Age. Tehran: Organization for Studying and Compiling Humanities Books of Universities (Samt), Humanities Research and Development Institute.
- Turner, G., (1970). “The State Apartments of Late Assyrian Palaces’’. Iraq, 32(2): 177-213. https://doi.org/10.2307/4199901
- Yadegari, P. & Sajjadzadeh, H., (2021). “The impact of spatial pattern and local urban space vegetation on the thermal comfort in cold climate”. Motale’at-e Shahri, 10(40): 15-26. DOI: 10.34785/J011.2021.937 (In Persian)
- Zanganeh, N. & Barzegar, Z., (2017). “Comparison of the internal and external thermal comfort of the winter residence and the central courtyard in a traditional house using PMV and PPD methods (Case study: Tolai House, Shiraz)”. Haft Hesar Environmental Studies, 6(24): 55-68. http://hafthesar.iauh.ac.ir/article-1-570-fa.html
- Zare Mahazabieh, A.; Heydari, S. & Shahcheraghi, A., (2020). “Indoor Environmental Quality in Qajar Houses of Shiraz with an emphasis on Thermal Comfort and Daylighting (case study: Nemati House)”. Journal of Architecture in Hot and Dry Climate, 7(10): 269-291. https://jias.kashanu.ac.ir/?_action=xml&article=111760&lang=en
- Zohouri Qaradarvishlou, R., (2014). “Architecture compatible with very cold mountain climate, case study: Ardabil historical houses”. Geography, 13(47): 211-229. https://www.sid.ir/paper/514108/fa (In Persian)